INTELIGENCIA ARTIFICIAL. INVESTIGACIONES, APLICACIONES Y AVANCES

INTELIGENCIA ARTIFICIAL. INVESTIGACIONES, APLICACIONES Y AVANCES

ORTEGA CANDEL, JOSÉ MANUEL

24,95 €
IVA incluido
Último ejemplar disponible. Envío 48h.
Editorial:
Anaya
Año de edición:
2025
Materia
Informática
ISBN:
978-84-415-5097-1
Páginas:
288
Encuadernación:
Rústica
Colección:
Titulos especiales
24,95 €
IVA incluido
Último ejemplar disponible. Envío 48h.
Añadir a favoritos

1. Introducción a la Inteligencia Artificial (AI)
1.1 Aprendizaje automático (machine learning)
1.1.1. Etapas de machine learning
1.1.2. Tipos de machine learning
1.1.3. Aprendizaje supervisado
1.1.4. Aprendizaje no supervisado
1.2. Aprendizaje profundo (deep learning)
1.2.1 Cómo trabaja el deep learning
1.2.2. Capa de entrada (input layer)
1.2.3. Capa oculta (hidden layer)
1.2.4. Funciones de activación
1.2.5. Capa de salida (output layer)
1.2.6. Niveles crecientes de abstracción
1.3. Diferencias entre inteligencia artificial, deep learning y machine learning
1.4. Importancia del deep learning en la actualidad
1.5. Capas ocultas en aprendizaje profundo
1.5.1. Problema de desvanecimiento del gradiente
1.5.2. Optimización avanzada
1.5.3. Overfitting y underfitting
1.5.4. Técnicas de regularización
1.6. Limitaciones del deep learning
1.6.1. Problemas derivados del sobreaprendizaje
1.6.2. Uso de la capa de dropout
1.6.3. Las redes neuronales como cajas negras
1.6.4. Relación entre la regresión logística y las redes neuronales

2. Introducción a las redes neuronales
2.1. Historia y evolución de las redes neuronales
2.2. Contexto histórico
2.3. Redes neuronales artificiales en deep learning
2.4. Aplicaciones de las redes neuronales
2.4.1. Reconocimiento de patrones
2.4.2. Procesamiento de lenguaje natural
2.4.3. Visión por computadora
2.4.4. Predicción y toma de decisiones
2.5. Ventajas del deep learning
2.6. Importancia de las redes neuronales en la inteligencia artificial
2.7. Componentes de una red neuronal
2.7.1. El peso adaptativo de las redes neuronales
2.7.2. Procesado de información de una neurona artificial
2.7.3. Las funciones de activación de las redes neuronales
2.8. Algoritmos más utilizados para implementar redes neuronales
2.9. Las funciones de coste de las redes neuronales
2.9.1. Función de pérdida
2.9.2. Ponderaciones y sesgos
2.9.3. Retropropagación y descenso gradual
2.10. Clasificación de las redes neuronales
2.10.1 Clasificación por el número de capas
2.10.2. Clasificación por los tipos de conexiones
2.10.3. Clasificación por el grado de conexiones
2.10.4. Clasificación por el tipo de arquitectura o tecnología
2.11. Perceptrón simple
2.12. Perceptrón multicapa (MLP)

3. Redes neuronales recurrentes (RNN)
3.1. Introducción
3.1.1 Concepto de recurrencia y celda de una RNN
3.2. Arquitectura de una RNN
3.2.1. Algoritmo de retropropagación a través del tiempo (BPTT)
3.3. Casos de uso y aplicaciones de redes neuronales recurrentes
3.4. Arquitecturas RNN especializadas
3.5. Long Short-Term Memory (LSTM)
3.5.1. Bidirectional LSTM
3.6. Gated Recurrent Unit (GRU)

4. Redes neuronales convolucionales (CNN)
4.1. Introducción a las CNN
4.2. Origen de las redes neuronales convolucionales
4.3. Arquitectura de las redes neuronales convolucionales
4.3.1. Capa convolucional
4.3.2. Capa de reducción (pooling)
4.3.3. Capa densa o fully connected
4.4. Tipos de arquitecturas CNN
4.4.1. GoogleNet (Inception)
4.4.2. AlexNet
4.4.3. Redes residuales (ResNet)
4.4.4. VGG
4.5. Redes convolucionales bidimensionales (2D CNN)
4.6. Ventajas de las redes convolucionales

5. Transfer learning y modelos pre entrenados
5.1. Introducción al transfer learning
5.2. Deep learning vs transfer learning
5.3. Técnicas de transfer learning
5.3.1. Aprendizaje por transferencia inductiva
5.3.2. Aprendizaje por transferencia no supervisado
5.3.3. Aprendizaje por transferencia transductiva
5.3.4. Transfer learning para la resolución de problemas de deep learning
5.4. Modelos pre entrenados de transfer learning
5.4.1. Modelos ImageNet
5.4.2. Modelos NLP
5.4.3. Modelos generativos
5.5. Librerías de modelos pre entrenados

6. Redes neuronales generativas adversarias o antagónicas (GAN)
6.1. Introducción a las redes GAN
6.2. Generación de imágenes en redes GAN
6.2.1. El papel de la red discriminadora
6.3. Características de las redes GAN
6.3.1. Entrenamiento de las redes GAN
6.3.2. Dificultades del entrenamiento de las redes GAN
6.4. Ventajas y desventajas de usar una red GAN
6.5. Aplicaciones de las redes GAN
6.6. Herramientas de IA para la creación y manipulación de imágenes
6.7. El futuro de las redes adversarias generativas

7. Inteligencia Artificial Generativa
7.1. Introducción
7.2. Definición de IA generativa
7.3. Historia y evolución de la IA hasta llegar a la IA generativa
7.4. El paso de la IA tradicional a la IA generativa
7.5. Modelos de lenguaje de gran escala (LLM)
7.6. Llama 2
7.6.1. Proceso de entrenamiento en Llama 2
7.7. Phi-2
7.7.1. Arquitectura de Phi-2
7.8. Gemini
7.9. Algoritmia relevante en el ámbito de la IA generativa

8. Procesamiento de lenguaje natural (PLN)
8.1. Introducción al procesamiento de lenguaje natural
8.2. La evolución del procesamiento del lenguaje natural
8.3. Modelos del lenguaje
8.3.1. Aplicaciones de modelos de lenguaje
8.3.2. Falcon 180B
8.3.3. OPT-175B
8.3.4. Otros modelos relevantes
8.4. Deep learning en el procesamiento de lenguaje natural
8.4.1. Modelo de embeddings
8.4.2. Word embeddings (incrustaciones de palabras)
8.4.3. Word2vec
8.4.4. GloVe (Global Vectors)
8.4.5. FastText
8.4.6. Tokenización y preprocesado
8.4.7. Tokenización a nivel de carácter
8.4.8. Tokenización a nivel de palabra
8.4.9. Tokenización a nivel de subpalabra
8.4.10. GPT Tokenizer
8.4.11. ELMo
8.4.12. El modelo transformer
8.5. Ejemplos de aplicaciones con OpenAI
8.5.1. Whisper

9. Transformers
9.1. El origen de los transformers
9.2. Versatilidad de los transformers en PLN
9.3. Mecanismo de atención en transformers
9.4. Arquitectura de un transformer
9.5. Estructura encoder-decoder y tipos de transformers
9.5.1. Self attention
9.6. Partes de un transformer
9.6.1. Embeddings
9.6.2. Codificación posicional
9.7. Mecanismo de atención en la arquitectura de transformers
9.7.1. Autoatención por multicabeza
9.7.2 Matriz de atención
9.8. Casos de uso de transformers
9.9. Transformers en procesamiento del lenguaje natural
9.9.1. Bard
9.9.2. LaMDA (Language Model for Dialogue Applications)
9.9.3. PaLM (Pathways Language Model)
9.10. Implementación de la capa transformer en Python
9.11. Hugging Face Transformers
9.12. Vision transformer (ViT)
9.12.1. Diferencias entre vision transformers y redes convolucionales
9.13. Líneas de investigación abiertas con transformers
9.13.1. Restormer
9.13.2. Swin transformer
9.13.3. ConvNeXt
9.14. Conclusiones

10. Autoencoders
10.1. Introducción
10.2. Casos de uso de autoencoders
10.3. Arquitectura de los autoencoders
10.4. Fundamentos de los autoencoders
10.5. Tipos de autoencoders
10.6. Tipos de aplicaciones con autoencoders

11. Glosario de términos

El campo de la inteligencia artificial (IA) ha experimentado un crecimiento explosivo en las últimas décadas, transformando a fondo numerosos aspectos de nuestra sociedad y tecnología. Desde los sistemas de recomendación en plataformas de entretenimiento hasta los vehículos autónomos y la medicina asistida por IA, los avances en este campo han revolucionado la forma en que interactuamos con la tecnología y abordamos los desafíos del mundo moderno.Inteligencia artificial. Investigaciones, aplicaciones y avances es un libro que proporciona una visión integral de los últimos desarrollos en IA, desde sus fundamentos teóricos hasta sus aplicaciones prácticas y las tendencias emergentes en este campo.

Artículos relacionados

  • DOMINA CHATGPT EN 3 DÍAS Y APROVECHA TODO SU POTENCIAL - 2.ª EDICIÓN
    TAPIAS CANTOS, PABLO
    ¿Cómo puede la Inteligencia Artificial revolucionar tu vida? ChatGPT es una herramienta pionera capaz de liberar tu creatividad, agilizar tareas y elevar tu productividad en los ámbitos personal y profesional. Si quieres descubrir cómo ChatGPT puede mejorar tu forma de trabajar, aprender y crear, has llegado al libro indicado. Con esta segunda edición, lograrás comprender y apr...
    Último ejemplar disponible. Envío 48h.

    14,80 €

  • ROMPE TUS LÍMITES
    IVARS, ANA
    Construye el negocio que siempre soñaste y transforma tu vida¿Sientes que hay algo más allá de la rutina diaria? ¿Que dentro de ti late el deseo de libertad económica y de dejar una huella en el mundo? Rompe tus límites es la guía definitiva que necesitas para transformar esa chispa en un negocio digital exitoso. En este libro descubrirás 20 estrategias prácticas y probadas par...
    Último ejemplar disponible. Envío 48h.

    21,95 €

  • INTERNET PARA LA GENTE
    TARNOFF, BEN
    Por qué deberíamos estar todos en pie de guerra para salvar nuestra independencia digital y nuestro pensamiento crítico. «Un libro extraordinario y urgente».Naomi KleinLa crítica ha dicho:«Ben Tarnoff es el mejor tipo de visionario: informado, práctico y comprometido al máximo con la transformación de un statu quo abusivo y corrupto. Tenemos la enorme fortuna de contar con su ...
    Último ejemplar disponible. Envío 48h.

    21,90 €

  • PROMPT ENGINEERING PARA INTELIGENCIA ARTIFICIAL GENERATIVA
    PHOENIX, JAMES / TAYLOR, MIKE
    Los modelos de lenguaje de gran tamaño (LLM) y los modelos de difusión, como ChatGPT y DALL-E, representan una revolución sin precedentes en el ámbito de la inteligencia artificial. Entrenados con texto e imágenes públicas disponibles en Internet, estos modelos son capaces de abordar una amplia variedad de tareas, ofreciendo soluciones innovadoras y automatizadas a problemas pr...
    Último ejemplar disponible. Envío 48h.

    42,85 €

  • MILLONARIO CON CHATGPT
    DAGGER, NEIL
    ¿Te imaginas transformar tu vida financiera con la ayuda de la inteligencia artificial? Millonario con ChatGPT de Neil Dagger te muestra cómo hacerlo posible. Este libro es una guía práctica para liberar el potencial de ChatGPT, una herramienta revolucionaria que ya ha alcanzado un millón de usuarios en solo cinco días. Desde automatizar tareas tediosas hasta crear nuevas fuent...
    Último ejemplar disponible. Envío 48h.

    11,00 €

  • EL MACHINE LEARNING Y LA INTELIGENCIA ARTIFICIAL
    RASCHKA, SEBASTIAN
    Si está listo para aventurarse más allá de los conceptos introductorios e indagar en el aprendizaje automático, en el aprendizaje profundo y en la inteligencia artificial (IA), el formato de preguntas y respuestas que presenta el libro El Machine Learning y la IA le facilitará mucho las cosas. Nacido de las cuestiones que a menudo se plantea el autor, Sebastián Raschka, este ...
    Último ejemplar disponible. Envío 48h.

    34,50 €

Otros libros del autor

  • DESARROLLO DE MICROSERVICIOS CON PYTHON
    ORTEGA CANDEL, JOSÉ MANUEL
    Domine las herramientas imprescindibles para programar de forma eficaz y desarrolle sus propias aplicaciones con Python En el mundo actual de la tecnología, las aplicaciones basadas en microservicios se han convertido en el estándar para construir aplicaciones escalables y flexibles. El lenguaje más adecuado para llevar a cabo esta tarea es, sin duda, Python. Si desea una guía...
    Último ejemplar disponible. Envío 48h.

    34,80 €

  • BIG DATA, MACHINE LEARNING Y DATA SCIENCE EN PYTHON
    ORTEGA CANDEL, JOSÉ MANUEL
    El libro está dirigido aquellos lectores que estén trabajando en proyecto relacionados con big data y busquen identificar las características de una solución de Big Data, los datos asociados a estas soluciones, la infraestructura requerida, y las técnicas de procesamiento de esos datos. Entre los principales objetivos podemos destacar: Introducir los conceptos de ciencias de da...
    Último ejemplar disponible. Envío 48h.

    32,90 €

  • INTELIGENCIA ARTIFICIAL. INVESTIGACIONES, APLICACIONES Y AVANCES
    ORTEGA CANDEL, JOSÉ MANUEL
    El campo de la inteligencia artificial (IA) ha experimentado un crecimiento explosivo en las últimas décadas, transformando a fondo numerosos aspectos de nuestra sociedad y tecnología. Desde los sistemas de recomendación en plataformas de entretenimiento hasta los vehículos autónomos y la medicina asistida por IA, los avances en este campo han revolucionado la forma en que inte...
    Sin existencias. Consulte disponibilidad

    11,99 €

  • IFCT107 RESPONSABLE EXPERTO DE DATA
    ORTEGA CANDEL, JOSE MANUEL
    El obtivo de este libro es que el lector adquiera los conocimientos necesariios para dominar el dato para entenderlo, transformarlo y capturar su máximo potencial con inteligencia artificial para optimizar procesos y simplificar el desarrollo de los proyectos y, comenzar con la creación de modelos d.... ...
    Sin existencias. Consulte disponibilidad

    32,90 €

  • E-BOOK - BIG DATA, MACHINE LEARNING Y DATA SCIENCE EN PYTHON
    ORTEGA CANDEL, JOSÉ MANUEL
    "CAPÍTULO 1. INTRODUCCIÓN A BIG DATA 1.1 INTRODUCCIÓN 1.2 DEFINICIÓN DE BIG DATA 1.3 TIPOS DE DATOS 1.4 CARACTERÍSTICAS DE BIG DATA 1.5 DESAFÍOS DE BIG DATA 1.6 TECNOLOGÍAS PARA BIG DATA 1.7 PERFILES BIG DATA 1.7.1 DIRECCIÓN DE DATOS(CHIEF DATA OFFICER-CDO) 1.7.2 CIENTÍFICO DE DATOS(SCIENTIST) 1.7.3 ANALISTA DE DATOS(DATA ANALYST) 1.7.4 INGENIERIO DE DATOS(DATA ENGINEER) 1.7.5 ...
    Sin existencias. Consulte disponibilidad

    9,99 €

  • CIBERSEGURIDAD. MANUAL PRÁCTICO
    ORTEGA CANDEL, JOSÉ MANUEL
    La ciberseguridad es uno de los desafíos;más importantes de la era digital;pues se trata de un punto crítico;en cualquier entorno tecnológico.;Debido a que los entornos son cada vez más dinámicos y cambiantes, es necesario estar actualizado ante nuevas amenazas y vulnerabilidades que aparecen cada día. Por ello, las organizaciones han empezado a destinar una parte de su presupu...
    Sin existencias. Consulte disponibilidad

    29,00 €