PROMPT ENGINEERING PARA INTELIGENCIA ARTIFICIAL GENERATIVA

PROMPT ENGINEERING PARA INTELIGENCIA ARTIFICIAL GENERATIVA

CÓMO ELABORAR PREGUNTAS PARA OBTENER RESPUESTAS FIABLES Y RELEVANTES CON LA IA

PHOENIX, JAMES / TAYLOR, MIKE

42,85 €
IVA incluido
Último ejemplar disponible. Envío 48h.
Editorial:
Marcombo
Año de edición:
2025
Materia
Informática
ISBN:
978-84-267-3883-7
Páginas:
412
Encuadernación:
Rústica
42,85 €
IVA incluido
Último ejemplar disponible. Envío 48h.
Añadir a favoritos

CONTENIDO

Prefacio



1. Los cinco principios del prompting

Visión general de los cinco principios del prompting

1.1. Visión general de los cinco principios del prompting

1.1.1. Proporcionar orientación
1.1.2. Especificar el formato
1.1.3. Proporcionar ejemplos
1.1.4. Evaluar la calidad
1.1.5. Dividir la tarea

1.2. Resumen

2.Introducción a los modelos de lenguaje de gran tamaño para la generación de texto

2.1. ¿Qué son los modelos de generación de texto?
2.1.1. Representaciones vectoriales: la esencia numérica del lenguaje
2.1.2-
Arquitectura transformer: orquestación de relaciones contextuales

2.1.3. Generación probabilística de texto: el mecanismo de decisión

2.2. Bases históricas: el auge de las arquitecturas de transformadores

2.3. Transformadores preentrenados generativos de OpenAI
2.3.1.GPT-3.5-turbo y ChatGPT

2.4. GPT-4

2.5. Gemini de Google


2.6. Llama de Meta y Open Source


2.7. Aprovechamiento de la cuantización y LoRA

2.8.
Mistral


2.9. Anthropic: Claude
GPT-4V(ision)


2.10. Comparación de modelos


2.11. Resumen

3. Prácticas estándar para la generación de texto con ChatGPT

3.1. Generación de listas

3.2. Generación de listas jerárquicas


3.3. Cuando evitar el uso de expresiones regulares


3.4. Generación de JSON
3.4.1. YAML


3.5. Filtrado de payloads en YAML


3.6. Tratamiento de payloads no válidos en YAML


3.7. Generación de distintos formatos con ChatGPT

3.7.1. Datos CSV simulados

3.8. Explicarlo como si tuviera cinco años


3.9. Traducción universal mediante los LLM


3.10. Preguntar por el contexto


3.11. Desagregación de estilos del texto


3.12. Identificación de las características deseadas del texto


3.13. Generación de contenido nuevo utilizando las características extraídas


3.14. Extracción de características de texto específicas mediante los LLM


3.15. Elaboración de resúmenes


3.16. Realización de resumen teniendo en cuenta las limitaciones de la ventana contextual


3.17. División del texto en fragmentos
3.17.1. Ventajas de la segmentación de texto

3.17.2. Escenarios para la división del texto en fragmentos

3.17.3. Mal ejemplo de segmentación


3.18. Estrategias de la división de texto en fragmentos


3.19. Detección de oraciones con SpaCy


3.20. Creación de un algoritmo sencillo de segmentación con Python


3.21. Fragmentado por ventana deslizante


3.22. Paquete de segmentación de texto


3.23. Segmentación de texto con Tiktoken


3.24. Codificaciones
3.24.1. Cómo comprender la tokenización de cadenas


3.25. Estimación del uso de tokens para llamadas a la API de chat


3.26. Análisis de sentimientos

3.26.1. Técnicas para mejorar el análisis de sentimiento

3.26.2. Limitaciones y retos del análisis de sentimiento


3.27. De menos a más

3.27.1. Planificación de la arquitectura

3.27.2. Codificación de funciones individuales

3.27.3. Adición de pruebas

3.27.4. Ventajas de la técnica de menos a más

3.27.5. Retos de la técnica de menos a más


3.28. Role prompting


3.29. Ventajas del role prompting


3.30. Retos del role prompting


3.31. Cuando utilizar el role prompting


3.32. Tácticas del prompting de GPT
3.32.1. Evitación de alucinaciones con referencias

3.32.2. Concesión a los GPT de "Tiempo para pensar"

3.32.3. Táctica del monólogo interior

3.32.4. Autoevaluación de respuestas de LLM


3.33. Clasificación con LLM


3.34. Creación de un modelo de clasificación


3.35. Voto mayoritario para la clasificación


3.36. Evaluación de criterios


3.37. Meta prompting


3.38. Resumen

4. écnicas avanzadas para la generación de texto con LangChain

4.1. Introducción a LangChain

4.1.1.Configuración del entorno


4.2. Modelos de chat


4.3. Modelos de chat en streaming


4.4. Creación de múltiples generaciones LLM


4.5. Plantillas de prompt de LangChain


4.6. Lenguaje de expresión LangChain (LCEL)


4.7. Uso de Prompt

4.8. Template con modelos de chat


4.9. Analizadores de salida


4.10. Evaluaciones de LangChain


4.11. Llamadas a funciones en OpenAI


4.12. Llamadas a funciones en paralelo


4.13. Llamadas a funciones en LangChain


4.14. Extracción de datos con LangChain


4.15. Planificación de consultas


4.16. Creación de plantillas de prompt de pocos elementos
4.16.1. Creación con un número fijo de ejemplos
4.16.2.
Formateado de los ejemplos

4.16.3. Selección de ejemplos de pocos elementos por longitud


4.17., Limitaciones con ejemplos de pocos elementos


4.18. Almacenamiento y carga de prompts LLM


4.19. Conexión de datos


4.20. Cargadores de documentos


4.21. Divisores de texto


4.22. División de texto por longitud y tamaño del token


4.23. División de texto con división recursiva de caracteres


4.24. Descomposición de tareas


4.25. Encadenamiento de prompts
4.25.1. Cadena secuencial
itemgetter y extracción de claves de diccionario
4.25.2. Estructuración de cadenas LCEL

4.25.3. Cadenas de documentos
Stuff
4.25.4. Refinamiento

4.25.5. Map reduce

4.25.6. Map re-rank


4.26. Resumen

5. Bases de datos vectoriales con FAISS y Pinecone



5.1. Generación mejorada por recuperaciones (RAG)


5.2. Introducción a los embeddings


5.3. Carga de documentos


5.4. Recuperación de memoria con FAISS


5.5. RAG con LangChain


5.6. Bases de datos vectoriales alojadas con Pinecone


5.7. Consulta automática


5.8. Mecanismos alternativos de recuperación


5.9. Resumen

6. Agentes autónomos con memoria y herramientas

6.1. Cadena de razonamiento


6.2. Agentes
Reason and Act (ReAct)

6.2.1. Implementación de Reason and Act

6.2.2. Utilización de las herramientas


6.3. Utilización de los LLM como API (Funciones OpenAI)


6.4. Comparación entre las funciones OpenAI y ReAct
6.4.1. Casos de uso de las funciones de OpenAI

6.4.2. ReAct

6.4.3. Casos de uso de ReAct


6.5. Paquetes de herramientas para agentes


6.6. Personalización de los agentes estándar


6.7. Agentes de aduanas en LCEL


6.8. Comprensión y uso del contenido de la memoria
6.8.1. Memoria a largo plazo

6.8.2. Memoria a corto plazo

6.8.3 Memoria a corto plazo en agentes de conversación QA


6.9. Memoria en LangChain
6.9.1. Preservación del estado

6.9.2. Consulta al estado

6.9.3. ConversationBufferMemory


6.10. Otros tipos populares de memoria en LangChain

6.10.1. ConversationBufferWindowMemory

6.10.2. ConversationSummaryMemory

6.10.3. ConversationSummaryBufferMemory

6.10.4. ConversationTokenBufferMemory


6.11. Agentes de funciones de OpenAI con memoria

6.12. Frameworks de agentes avanzados

6.12.1. Agentes de planificación y ejecución
6.12.2. Árbol de razonamiento


6.13. Callbacks (Funciones de retorno)

6.13.1. Callbacks globales (constructor)

6.13.2. Callbacks específicos de solicitud

6.13.3. El argumento Verbose

6.13.4. ¿Cuándo utilizar Which?

6.13.5. Recuento de tokens con LangChain


6.14. Resumen

7. Introducción a los modelos de difusión para la generación de imágenes



7.1. DALL-E de OpenAI


7.2. Midjourney


7.3. Stable Diffusion


7.4. Gemini de Google


7.5. Texto a vídeo


7.6. Comparación de modelos


7.7. Resumen


8. Prácticas estándar para la generación de imágenes con Midjourney



8.1. Modificadores de formato


8.2. Modificadores de estilos artísticos


8.3. Prompt engineering inversa


8.4. Impulsores de la calidad


8.5. Prompts negativos


8.6. Términos ponderados


8.7. Prompting con una imagen


8.8. Inpainting (Retoque de imágenes)


8.9. Outpainting (Ampliación de imágenes)


8.10. Personajes consistentes


8.11. Reescritura de prompts


8.12. Desagregación de memes


8.13. Mapeo de memes


8.14. Análisis de prompts


8.15. Resumen


9. Técnicas avanzadas de generación de imágenes con Stable Diffusion



9.1. Ejecución de Stable Diffusion


9.2. Interfaz web de usuario AUTOMATIC1111


9.3. Img2Img


9.4. Escalado de imágenes


9.5. Interrogate CLIP


9.6. Inpainting y outpainting en SD


9.7. ControlNet


9.8. Modelo de segmentación de todo por segmentos (SAM)


9.9. Ajuste fino de DreamBooth


9.10. Refinador XL de Stable Diffusion


9.11. Resumen


10. Creación de aplicaciones potenciadas por IA



10.1. Redacción de blogs con IA


10.2. Investigación del tema


10.3. Entrevista con expertos


10.4. Generación del esquema


10.5. Generación de texto


10.6. Estilo de escritura


10.7. Optimización del título


10.8. Imágenes de blogs con IA


10.9. Interfaz de usuario


10.10. Resumen

Los modelos de lenguaje de gran tamaño (LLM) y los modelos de difusión, como ChatGPT y DALL-E, representan una revolución sin precedentes en el ámbito de la inteligencia artificial. Entrenados con texto e imágenes públicas disponibles en Internet, estos modelos son capaces de abordar una amplia variedad de tareas, ofreciendo soluciones innovadoras y automatizadas a problemas previamente inabordables. A pesar de su accesibilidad, muchos desarrolladores enfrentan desafíos significativos al intentar obtener resultados fiables y utilizables en sistemas automatizados. Este libro ofrece una guía exhaustiva para adquirir una sólida base en IA generativa y aprender a aplicar estos modelos en la práctica. Los autores, James Phoenix y Mike Taylor, presentan los principios del prompt engineering, esenciales para trabajar de manera efectiva con IA en entornos de producción. En este libro descubrirá: - Los cinco principios de prompting que son transferibles entre diferentes modelos y que mantendrán su efectividad en el futuro. - Aplicaciones prácticas de la IA generativa en ejemplos del mundo real, utilizando bibliotecas y frameworks como LangChain. - Cómo evaluar y comparar modelos: analizará y comparará modelos de OpenAI, como GPT-4 y DALL-E 2, con alternativas de código abierto, identificando sus fortalezas y debilidades. - Implementación en diversos ámbitos: aprenderá cómo aplicar estos principios en procesamiento del lenguaje natural (PNL), generación de texto e imágenes, y generación de código. Este libro es una herramienta indispensable para cualquier desarrollador que quiera llevar sus proyectos al siguiente nivel y aprovechar el poder de la IA generativa para transformar sus resultados y diferenciarse en el mercado. No lo deje escapar.

Artículos relacionados

  • PROMPT ENGINEERING PARA INTELIGENCIA ARTIFICIAL GENERATIVA
    PHOENIX, JAMES / TAYLOR, MIKE
    Los modelos de lenguaje de gran tamaño (LLM) y los modelos de difusión, como ChatGPT y DALL-E, representan una revolución sin precedentes en el ámbito de la inteligencia artificial. Entrenados con texto e imágenes públicas disponibles en Internet, estos modelos son capaces de abordar una amplia variedad de tareas, ofreciendo soluciones innovadoras y automatizadas a problemas pr...
    Último ejemplar disponible. Envío 48h.

    42,85 €

  • MILLONARIO CON CHATGPT
    DAGGER, NEIL
    ¿Te imaginas transformar tu vida financiera con la ayuda de la inteligencia artificial? Millonario con ChatGPT de Neil Dagger te muestra cómo hacerlo posible. Este libro es una guía práctica para liberar el potencial de ChatGPT, una herramienta revolucionaria que ya ha alcanzado un millón de usuarios en solo cinco días. Desde automatizar tareas tediosas hasta crear nuevas fuent...
    Último ejemplar disponible. Envío 48h.

    11,00 €

  • CANVA CURSO COMPLETO
    CHEMA GOMEZ
    CANVA CURSO COMPLETO es un libro del autor CHEMA GOMEZ editado por RA-MA. CANVA CURSO COMPLETO tiene un código de ISBN 978-84-10-18194-6, de la colección INFORMATICA GENERAL y consta de 216 Páginas. ...
    Último ejemplar disponible. Envío 48h.

    19,90 €

  • EL MACHINE LEARNING Y LA INTELIGENCIA ARTIFICIAL
    RASCHKA, SEBASTIAN
    Si está listo para aventurarse más allá de los conceptos introductorios e indagar en el aprendizaje automático, en el aprendizaje profundo y en la inteligencia artificial (IA), el formato de preguntas y respuestas que presenta el libro El Machine Learning y la IA le facilitará mucho las cosas. Nacido de las cuestiones que a menudo se plantea el autor, Sebastián Raschka, este ...
    Último ejemplar disponible. Envío 48h.

    34,50 €

  • TE LA HAN JUGADO
    HON, ADRIAN
    Los trabajadores de un almacén preparan cajas mientras un dragón virtual corretea por sus pantallas. Si vencen a sus compañeros, obtienen un premio. Si no, pueden ser despedidos. Uber plantea retos a sus chóferes agotados para que sigan conduciendo. China puntúa a sus ciudadanos para que se comporten correctamente, y las microtransacciones de los videojuegos se aprovechan de lo...
    Último ejemplar disponible. Envío 48h.

    26,50 €

  • CÓMO FUNCIONA LA INTELIGENCIA ARTIFICIAL
    KNEUSEL, RONALD T.
    ¿Desea saberlo todo sobre la IA? Son muchos los manuales que enseñan conceptos acerca de la IA y que se quedan solo en lo superficial, o bien presentan demasiada teoría complicada y poco clara. Sin embargo, este libro es distinto: profundiza en cómo funciona la IA sin recurrir a las complejas matemáticas. Con sus más de dos décadas de experiencia en el campo, Ronald T. Kneuse...
    Último ejemplar disponible. Envío 48h.

    23,80 €